Krypton Fluoride Chemistry; a Route to AuF_5 , $KrF^+AuF_6^-$, $Xe_2F_3^+AuF_6^-$, and $NO^+AuF_6^-$: The KrF^+-XeOF_4 System

By JOHN H. HOLLOWAY* and GARY J. SCHROBILGEN* (Department of Chemistry, Leicester University, Leicester LEI 7RH)

Summary Pyrolysis of newly prepared $KrF^+AuF_6^-$ gives AuF_5 which reacts with XeF_2 to produce $Xe_2F_3^+AuF_6^-$ and NOF to give NO⁺AuF_6^-; $Kr^+AuF_6^-$ is a powerful oxidative fluorinating agent with respect to O₂ and Xe and the reaction of KrF^+ with excess $XeOF_4$ gives $XeOF_4.XeF_5^+$ and O_2^+ salts, not $XeOF_5^+$ as reported previously.

KRYPTON DIFLUORIDE, KrF⁺, and Kr₂F₃⁺ are all powerful oxidative fluorinating agents. Oxidation of xenon to XeF₆, iodine to IF₇,¹O₂ to O₂⁺, Xe to XeF₅^{+2,3} and BrF₅ to BrF₆^{+2,4} are all possible with these reagents at low temperature. The last reaction, using krypton fluoride cations, is significant since it has provided the first synthesis of BrF₆⁺ when other methods, including the use of powerful oxidants like PtF₆ have failed. We now report the use of krypton fluoride cations for the synthesis of a number of previously unreported Au^V species, and also show that the results of the reaction of KrF^+ salts with $XeOF_4$ have previously been misinterpreted.

When KrF₂ was treated with Au powder in HF the

$$7 \text{KrF}_2 + 2 \text{Au} \xrightarrow{20 \text{ °C}} 2 \text{KrF}^+ \text{AuF}_6^- + 5 \text{Kr} \quad (1)$$

resulting product was a light yellow solid which was sparingly soluble in HF to give a pale yellow solution (equation 1). Excess KrF₂ and HF solvent were removed by rapid pumping at 0 °C. The Raman spectrum of the powder, recorded at -80 °C under a layer of HF, is consistent with a formulation in which the KrF⁺ cation is fluorine-bridged to the AuF₆⁻ anion; $\dagger \nu$ (Kr-F) 597(82), ν (Kr--F) 346(2), and δ (F-Kr--F) 163(2) cm⁻¹. Lines attributable to a distorted AuF₆⁻ anion were observed at $\nu_8(e)$ 650(34), $\nu_1(a_1)$ 603(100), $\nu_2(a_1)$ 541(sh), $\nu_5(b_1)$ 530(19), $\nu_4(a_1)$ 471(1), $\nu_7(b_2)$ 278(2), $\nu_3(a_1)$ 233(11), $\nu_9(e)$ 226(17), and $\nu_{11}(e)$ 219(12) and are

 $[\]dagger$ All the krypton and xenon adducts reported are represented in terms of ionic formulations. Since these molecules have significant covalent contributions to their bonding in the form of fluorine bridging, it is stressed that the ionic representations are strictly a formalism (cf. refs. 1-4).

assigned on the basis of approximate C_{4v} symmetry for the anion.3

 $KrF+AuF_6$ is an extremely potent oxidative fluorinating agent. It reacts rapidly at room temperature with oxygen gas to yield $O_2^+AuF_6^-$. The observed Raman frequencies are $\nu(O_2^+)$ 1836(63); AuF₆, $\nu_1(a_{1g})$ 598(100), $\nu_2(e_g)$ too weak to be observed, and $v_3(t_{2g})$ 230(33) [cf. Cs+AuF₆-, $v_1(a_{1g})$ 595(66), $v_2(e_g)$ 520(28) and $v_5(t_{2g})$ 224(25) in ref. 5]. The reaction with xenon at room temperature is more complex. An HF solution of the dark red-orange product yields a bright yellow solution which was shown by ¹⁹F n.m.r. spectroscopy to contain the XeF₅+ cation (identified by its AX_4 spectrum and accompanying ¹²⁹Xe satellites⁶ and AuF_6^- (shown by a sharp singlet at 117.0 p.p.m.) as well as an insoluble yellow-brown solid which has not been characterised. Complete collapse of the 197Au-19F spin-spin coupling in AuF_6 (197Au 100%, I 3/2) indicates that the electric field gradient at gold is not spherical in HF solvent.

Pyrolysis of KrF+AuF₆⁻ at 60-65 °C yields pure AuF₅ according to equation (2).

$$KrF^{+}AuF_{6}^{-} \xrightarrow[8 h]{60-65 \circ C} AuF_{5} + Kr + F_{2} \qquad (2)$$

The empirical formula $AuF_{4.98}$, deduced from the elemental analyses, is in excellent agreement with the proposed pentafluoride formulation. AuF_5 is dark red-brown when massive, but orange when powdered. X-ray powder photographs show that no AuF₃ is present in any of our AuF_5 preparations and indicates that AuF_5 is distinctly different from the monoclinic, MoF₅-type⁷ and orthorhombic, ReF₅-type structures.⁷ Similarities to the monoclinic, RuF₅type patterns, however, suggest that AuF₅ may also be tetrameric containing bent Au---F---Au bridge bonds. Three bands were observed in the room-temperature Raman spectrum of solid AuF_5 at 658(43), 598(100) and 228(25) cm⁻¹.

The direct interaction of excess XeF₂ with AuF₅ in HF or BrF_5 gave $Xe_2F_3^+AuF_6^-$ on removal of solvent and excess XeF₂ under vacuum. In addition to lines assignable to the $Xe_{2}F_{3}^{+}$ cation, the Raman spectrum of the pale-yellow solid contained lines which can be readily assigned to the AuF₆anion at $v_1(a_{1g})$ 597(64), 594(100); $v_2(e_g)$ 528(12); and $v_5(t_{2g})$ 222(17) cm⁻¹. NO⁺AuF₆⁻ was prepared by the interaction of excess NOF and AuF₅ in HF. Removal of excess NOF and HF under vacuum gave a pale yellow solid whose Raman spectrum was consistent with the proposed

formulation: $v(NO^+)$ 2329(2); $v_1(a_{1g})$ 603(100), 600(99); $\nu_2(e_g)$ too weak to be observed, and $\nu_5(t_{2g})$ 236(16), 231(16). The i.r. spectrum was poorly defined except for a sharp peak at 2330 cm⁻¹ assigned to ν (NO⁺).

Bartlett and his co-workers⁸ have previously reported that the reaction of $KrF+Sb_2F_{11}$ with $XeOF_4$ in a silica reaction vessel gives rise to the $XeOF_5^+$ cation as well as O_2^+ . The origin of O₂⁺ was attributed to the reaction of KrF⁺ with the reaction vessel. We have now re-investigated this system in FEP containers. The reaction of excess XeOF₄ with $KrF+SbF_6^-$ or $KrF+Sb_2F_{11}^-$ yields a white solid when excess XeOF₄ is removed under vacuum at 20 °C. Using $KrF+SbF_{6}$ the Raman spectrum was identical with that reported previously by Bartlett *et al.* for $XeOF_{5}^{+}Sb_{n}F_{5n-1}^{-}$ while using $KrF+Sb_2F_{11}^-$ the same spectrum was obtained, but it also contained lines assignable to $O_2^+SbF_6^{-9}$ and XeOF₃+SbF₆^{-.10} The room temperature ¹⁹F n.m.r. spectrum of the former solid was examined in HF solution and was shown to consist of a singlet with ¹²⁹Xe satellites $[-92\cdot1 \text{ p.p.m.}, J(^{129}\text{Xe}-^{19}\text{F}) 1154 \text{ Hz}]$ and an AX₄ spectrum with ¹²⁹Xe satellites $[F_A - 227.7 \text{ and } F_X - 106.8 \text{ p.p.m.}, J(^{129}Xe^{-19}F_A) 1390, J(^{129}Xe^{-19}F_X) 177, \text{ and } J_{FF} 179 \text{ Hz}].$ The integrated relative intensities of the singlet and its satellites and the X_4 part of the AX_4 spectrum and its satellites were 1:1. The ¹⁹F n.m.r. results are consistent with a 1:1 molar mixture of $XeOF_{4}^{11}$ and XeF_{5}^{+6} in solution. Cooling of the sample to -80 °C in the n.m.r. probe resulted in a white precipitate and a corresponding dimunition of the $XeOF_4$ and $XeF_5^{+19}F$ n.m.r. intensities. The Raman spectrum of the precipitate was recorded in situ at -80 °C and shown to be identical with that observed for the solid prior to solution in HF. The Raman spectrum of the solid can therefore be assigned in terms of the molecular adduct XeOF₄.XeF₅+SbF₆⁻. XeF₆⁺ [$\nu_1(a_1)$ 675(3); $\nu_2(a_1)$ 618(100); $\nu_4(b_1)$ 561(16); $\nu_8(e)$ 409(8); $\nu_8(a_1)$ 364(sh); $\nu_6(b_3)$ 313(4), 304(sh), cf. ref. 12], $SbF_{6}^{-}(C_{4v})$ [v₈(e) 698(2), 690(50); $\nu_1(a_1)$ 664(6); $\nu_2(a_1)$ 654(10); $\nu_4(a_1)$ 444(1); $\nu_9(e)$ 284(2); $v_3(a_1)$ 278(4); $v_{11}(e)$ 256(0.5), cf. ref. 3], XeOF₄ [$v_1(a_1)$ 921(24); $\nu_{2}(a_{1})$ 576(68); $\nu_{5}(b_{2})$ 542(69); $\nu_{8}(e)$ 372(10); $\nu_{3}(a_{1})$ 295(9); $v_4(b_1)$ 235(6); $v^9(e)$ 166(1), 158(2), cf. ref. 13].

The reactions of KrF+ salts with excess XeOF, presumably occur according to equations (3) and (4) and do not

$$KrF^+ + 2XeOF_4 \rightarrow XeOF_4.XeF_5^+ + Kr + \frac{1}{2}O_2$$
 (3)

$$O_2 + KrF^+ \rightarrow O_2^+ + Kr + \frac{1}{2}F_2$$
(4)

yield XeOF₅⁺ as previously reported.⁸

(Received, 14th April 1975; Com. 434.)

¹ B. Frlec and J. H. Holloway, J.C.S. Chem. Comm., 1973, 370.
² R. J. Gillespie and G. J. Schrobilgen, J.C.S. Chem. Comm., 1974, 90.
³ R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., in the press.
⁴ R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 1974, 13, 1230.
⁵ K. Leary and N. Bartlett, J.C.S. Chem. Comm., 1972, 903.
⁶ R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 1974, 13, 765.
⁷ R. D. Peacock in 'Advances in Fluorine Chemistry,' vol. 7, ed., J. C. Tatlow, R. D. Peacock, H. H. Hyman, and M. Stacey, Butter-vorths. London. 1973. pp. 113-118.

worths, London, 1973, pp. 113-118. ⁸ C. J. Adams, N. Bartlett, K. Leary, and D. E. McKee, 164th National Meeting of the American Chemical Society, August 27th-¹⁰ C. J. Adams, N. Bartlett, K. Leary, and D. E. McKee, 104th National Meeting of the American Chemical Society, August 27th— September 1st, 1972; D. E. McKee, C. J. Adams, A. Zalkin, and N. Bartlett, J.C.S. Chem. Comm., 1973, 26.
⁹ D. E. McKee and N. Bartlett, Inorg. Chem., 1973, 12, 2738.
¹⁰ R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Inorg. Chem., in the press.
¹¹ H. D. Frame, J. L. Huston, and I. Sheft, Inorg. Chem., 1969, 8, 1549.
¹² R. J. Gillespie and B. Landa, Inorg. Chem., in the press.
¹³ H. H. Hyman in 'Physical Chemistry,' vol. 5, ed. H. Eyring, D. Henderson, and W. Jost, Academic Press, New York, 1970, ch. 11, or allo 612

pp. 610---613.